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Abstract. We investigate the tunneling zone V0−m<E < V0+m for a one-dimensional potential in the
Dirac equation. We find the appearance of superluminal transit times, akin to the Hartman effect.
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1 Introduction

In several recent articles, we have investigated in some de-
tail one-dimensional electrostatic potentials by means of
both the Schrödinger [1–3] and the Dirac equation [4–6].
Several original phenomena have been observed, such as
the transition from resonance phenomena to multiple (in-
finite) peak formation [5], equivalent to a shift from wave-
like to particle behavior in the barrier diffusion zone E >
V0+m, where V0 is the barrier height, E one of the wave
packet energies and m the particle mass. We have also in-
vestigated the compatibility of the barrier results with the
Klein paradox [7–9], when m < E < V0−m. In this lat-
ter case, we have noted the existence of dynamic localized
states with a continuous spectrum [6]. These states are the
nearest approximation to the bound states of Schrödinger
or of Dirac in the evanescent energy zone considered in this
paper.
The evanescent zone is the last energy zone we need

to consider to complete our analysis. It is given by V0−
m<E < V0+m (V0 > 2m) orm<E < V0+m (V0 < 2m).
It has evanescent (real exponential) space forms in the
barrier region. For a well potential, it is just such forms
that give rise to discrete bound states. In this paper, we
shall concentrate on the single barrier potential and hence
complete our analysis for this elementary structure. The
evanescent stationary solutions become dynamic if instead
of plane waves we work with incoming wave packets. Then
the particles within the classically forbidden region are
measurable only for a finite time, the time of transition
from an incoming wave packet to reflected/transmitted
wave packets. Even for the step potential in this energy
zone there will exist, during this transitory time, a cur-
rent flow both into and subsequently out of the step.
Since the stationary solution has a zero current flow within
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the step, this feature is not always recognized. It is, how-
ever, obvious when one admits that there will be a non-
zero transitory dρ/dt for any space interval within the
step.
The most important barrier feature (both theoretic-

ally and experimentally) of this energy zone is tunneling.
A part of the incoming wave packet will continue its course
beyond the barrier region. Its magnitude will be modu-
lated by the barrier. For “large” barriers (compared to
the wave packet size) an exponential reduction in ampli-
tude ∝ exp[−ql] occurs, where l is the barrier length and

q is
√
m2− (E−V0)

2 . This not only reduces the ampli-
tude but modifies the transition spectrum. The smaller the
transition amplitude is, the smaller the modifications in
the reflected wave packet from the incident wave packet.
However, in general, for both the reflected and transmitted
wave packets we have maxima in configuration space and
can apply the stationary phase method (SPM) to calculate
the reflection time delays and transition times [10]. With
the Schrödinger equation the conclusion that the transition
time is independent of the barrier width l, when l→∞, is
known as the Hartman effect [11]. Such a result is hard to
avoid and, if the same occurs for the Dirac equation (the
subject matter of this paper, previously discussed by other
authors [12–14]), we would have to face the unpalatable
feature of superluminal velocities within the barrier. We
warn that more than one type of transition time has been
defined in the literature [10, 15–17], and for details we re-
fer to [18, 19]. In this paper, we intend to investigate this
particular aspect of tunneling by means of the SPM, neg-
lecting the possible ambiguities that this approximation is
known to have.
In the next section, we define all quantities and equa-

tions used. Some of these have been given also else-
where [5, 6], but for completeness we present them again.
We also solve the stationary plane wave problem for the
step and barrier. In Sect. 3, we calculate the transition
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times by using the SPM and, based on numerical calcula-
tions, we discuss the appearance of superluminal velocities.
Our conclusions are drawn in Sect. 4.

2 Formalism and solutions for the barrier

We shall work with a one-dimensional (electrostatic) po-
tential in the Dirac equation. The chosen axis is the z-axis.
However, we shall use the solutions and hence the formal-
ism of the full three-dimensional case [21]. Thus, the sta-
tionary Dirac equation reads

[E−V (z)]γ0ψ(z)+ iγ3ψ
′(z) =mψ(z) , (1)

where γ0 and γ3 are two of the Dirac matrices (see be-
low) and ψ′(z) = dψ(z)/dz. The explicit time dependence
exp[−iEt] has been dropped from the above equation, and
hence ψ is only a function of the z coordinate. Our chosen
representation for the gamma matrices is the Pauli–Dirac
one, so that

γ0 =

(
1 0
0 −1

)
, γ3 =

(
0 σ3
−σ3 0

)
. (2)

The barrier potential is fixed at V0 in the region 0< z < l
and is zero elsewhere. The z-axis is divided into three re-
gions. Region I is the region of the incident and reflected
waves (z < 0). Region II is the barrier region. Region III
contains the transmitted wave (z > l). For V0 >m, it is
convenient to divide the tunnel energy zone into two sub-
zones, both evanescent: (A) V0 <E <V0+m, and (B) V0−
m<E < V0 (V0 > 2m) orm<E < V0 (m< V0 < 2m). For
V0 <m, only the evanescent zone (A),m<E <V0+m, ex-
ists. The A zone corresponds to an energy larger than the
potential (E > V0), and we will use the “positive energy”
u(s) solutions modified for a non-zero potential V0. The B
zone corresponds to the zone with an energy below the po-
tential (E < V0).
One of the questions we ask in this work is if all so-

lutions with energy less than the potential (“negative en-
ergy”) represent physical antiparticles, be they oscillatory
(free) or evanescent. For the B zone we shall use the u(s+2)

solutions modified to allow for a constant non-zero poten-
tial V0.
Spin flip is absent in all these problems (independent of

the value of E), so by choosing an incoming spin up state,

u(1)(p,E) = [1, 0, p/(E+m), 0]t , (3)

we find the following spinors in region II:

A zone :

u(1)(±iq, E−V0) = [1, 0,±iq/(E−V0+m), 0]
t ,

B zone :

u(3)(±iq, |E−V0|) = [∓iq/(|E−V0|+m), 0, 1, 0]
t .
(4)

Only the spinor u(1)(p,E) appears in region III.

2.1 A zone: V0 <E < V0+m (V0 >m)
or m<E < V0+m (V0 <m)

The solutions in the three regions are

Region I : z < 0 ,

u(1)(p,E) exp[ipz]+R>u
(1)(−p,E) exp[−ipz] ,

Region II : 0< z < l ,

A>u
(1)(iq, E−V0) exp[−qz]+B>u

(1)(−iq, E−V0)

× exp[qz] ,

Region III : l < z ,

T>u
(1)(p,E) exp[ipz] , (5)

and we are using un-normalized solutions, but such that
|R>|

2
is the reflection probability. The symbols R≶ (T≶)

will be used for the A/B energy zones, because E ≶ V0,
respectively. The solutions in region II are the evanescent
solutions ∝ exp[±qz]. We shall in the following refer to
the case of a step potential with only two regions (I and
II), without treating this case separately; we merely note
that it corresponds to the above solutions with B≶ = 0. It
should also be obtainable from the barrier solution when
l→∞, although some care must be taken when multiple
peaks occur, such as in the case of diffusion above po-
tential [5]. The first of these barrier peaks reproduces the
single step peak in the l→∞ limit.
Solving the continuity equations, ψI(0) = ψII(0) and

ψII(l) = ψIII(l), in matrix form yields
(
1 1
1 −1

)[
1
R>

]
=

(
1 1
α −α

)[
A>
B>

]
,

(
rre−ql eql

αe−ql −αeql

)[
A>
B>

]
=

[
T>
T>

]
eipl , (6)

where

α= i
q

p

E+m

E−V0+m
.

Since Dirac is a first order equation, only the continuity of
ψ is imposed. Solving the above equations gives

[
1
R>

]
=

(
1 1
1 −1

)−1(
1 1
α −α

)(
e−ql eql

αe−ql −αeql

)−1

×

[
T>
T>

]
eipl

=
1

2

[
cosh(ql)+α sinh(ql) cosh(ql)+ sinh(ql)α

cosh(ql)−α sinh(ql) − cosh(ql)+ sinh(ql)α

]

×

[
1
1

]
T>e

ipl . (7)

Thus,

R> =
1−α2

2α
sinh(ql)T> exp[ipl] ,

T> = exp[−ipl]

/[
cosh(ql)+

1+α2

2α
sinh(ql)

]
. (8)
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The non-relativistic limit, E−m = E NR�m and V0�
m, reproduces the Schrödinger results for the reflection
and transmission coefficients (see the appendix for a de-
tailed derivation).

2.2 B zone: V0−m<E < V0 (V0 > 2m)
or m<E < V0 (m<V0 < 2m)

For this zone, in the potential region, we shall use the
spinor u(3). Thus, we have

Region I : z < 0 ,

u(1)(p,E) exp[ipz]+R<u
(1)(−p,E) exp[−ipz] ,

Region II : 0< z < l ,

A<u
(3)(iq, |E−V0|) exp[−qz]+B<u

(3)(−iq, |E−V0|)

× exp[qz] ,

Region III : l < z ,

T<u
(1)(p,E) exp[ipz] . (9)

The continuity equations in matrix form yield

(
1 1
1 −1

)[
1
R<

]
=
E+m

p

(
−β β
1 1

)[
A<
B<

]
(10)

and

E+m

p

(
−βe−ql βeql

e−ql eql

)[
A<
B<

]
=

[
T<
T<

]
eipl , (11)

where

β = i
qp

(E+m)(|E−V0|+m)
.

Solving the above matrix equations, we find

[
1
R<

]
=

(
1 1
1 −1

)−1(
−β β
1 1

)(
−βe−ql βeql

e−ql eql

)−1 [
T<
T<

]
eipl

=
1

2

[
cosh(ql)− sinh(ql)

β
cosh(ql)−β sinh(ql)

cosh(ql)+ sinh(ql)
β

− cosh(ql)−β sinh(ql)

]

×

[
1
1

]
T>e

ipl . (12)

Thus,

R< =
1−β2

2β
sinh(ql)T< exp[ipl] ,

T< = exp[−ipl]

/[
cosh(ql)−

1+β2

2β
sinh(ql)

]
. (13)

Although it may not be obvious, simple algebraic calcula-
tions show that R< and T< are functionally identical to
R> and T> respectively (although, of course, valid in dis-
joint energy zones). Hence, in the following, we will drop

the suffixes and use

T = exp

{
−ipl+ i arctan

[
E
2
−m2−EV0
qp

tanh(ql)

]}/

√√√√
cosh2(ql)+

[
E
2
−m2−EV0
qp

sinh(ql)

]2
,

R=−i
mV0

qp
sinh(ql)T exp[ipl] . (14)

3 Time analysis

In this section, we shall calculate the analytic expression
of the transition times by using the SPM and, by numeri-
cal calculation, we present the appearance of superluminal
velocities.

3.1 SPM transition times

For this analysis the essential ingredient is the phase of
the transmitted amplitude T . The gaussian envelope func-
tion g(p) will be assumed to be real, and the wave packet
function Ψ(x, t), defined in the standard way, is given
by

Ψ(x, t) =

∫
dpg(p)ψ(z) exp[−iEt] . (15)

A common choice for g(p) (unnormalized) peaked at p0
is

g(p) = exp
[
−a2(p−p0)

2/4
]
,

so that for the incoming waveψI,inc(z) = u
(1)(p,E) exp[ipz],

the wave packet width is just a (large barriers are thus de-
fined by l/a� 1). Due to the real nature of g(p), the phase
in ΨI,inc(x, t) is simply

φI,inc = pz−Et . (16)

The SPM then sets the maximum of the incident wave
packet at time t at

z =

[
dE

dp

]

0

, t=
p0

E0
t ,

where E0 is the energy corresponding to the peak mo-
mentum value of p0. Therefore, the incoming wave packet
maximum (ignoring interference effects with the reflected
wave) reaches z = 0 at time t= 0.
The SPM calculation of the transmission time uses the

phase factor of T obtained in the previous section,

φIII,tra = arctan

[
E
2
−m2−EV0
qp

tanh(ql)

]

+p(z− l)−Et . (17)
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Taking the derivative of φIII,tra with respect to E and set-
ting z = l, we find the following functional:

ttra(E, l) =

⎧⎨
⎩
2E−V0
qp

⎡
⎣1+

(
E
2
−m2−EV0
qp

)2⎤
⎦ tanh(ql)

+
(E
2
−m2−EV0)(V0−E)l

q2p cosh2(ql)

⎫⎬
⎭

/

⎧⎨
⎩1+

[
E
2
−m2−EV0
qp

tanh(ql)

]2⎫⎬
⎭ . (18)

The exit time of a single transmitted wave packet is then
given by ttra(Ẽ0, l), where Ẽ0 =

√
p̃20+m

2, and p̃0 is the
peak momentum of the transmitted wave packet, i.e. (neg-
lecting the spinor momentum dependencies) the maximum
of g(p)|T | (see Figs. 1 and 3). If the barrier is short, then

Fig. 1. The transmitted momentum distribution is plotted as
a function of ap for different values of l/a, where a is the width
of the incident wave packet at t = 0. The potential is equal
to the mass of the particle, aV0 = am = 10, and the peak of
the incident momentum distribution is chosen to coincide with
the center of the allowed zone (compatible with tunnelling) for
the momentum, ap0 = a

√
V0(V0+2m)/2 = 5

√
3. For moderate

values of l/a the transmitted momentum distribution is almost
gaussian. The amplifications show the attenuation (due to the
evanescent waves) of the transmission probability for increasing
values of l/a

p̃0 ≈ p0 because the gaussian dominates over the transmis-
sion amplitude. On the other hand, if we take l→∞, the
functional ttra(E, l) greatly simplifies, giving

τtra(E) := lim
l→∞

ttra(E, l) =
2E−V0
qp

, (19)

which is independent of l. At first glance, this would mean
unlimited tunneling velocities. Actually, this is often ar-
gued without taking into account the difference between p0
and p̃0. The exit time is given by τ(Ẽ0) and not by τ(E0).
If, for example, we set Ẽ0 to its maximum allowed value
(compatible with tunneling) Ẽ0 = V0+m, we find

τtra[V0+m]→∞ ,

so that the tunneling velocities are not in general unlim-
ited. However, since we shall find in the next section su-
perluminal velocities for finite l, we shall not dwell upon

Fig. 2. This figure contains two curves. The plot in a rep-
resents the variation of the (adimensional) transmission time,
ttra(Ẽ0, l)/a as a function of l/a. The plot in b represents
the ration between the barrier width, l, and the transmis-
sion time ttra(Ẽ0, l), i.e. the effective velocity of the tunnelling
process. The potential is equal to the mass of the particle,
aV0 = am= 10, and the peak of the incident momentum dis-
tribution is ap0 = 5

√
3. The maximum value of l/a has been

chosen to be 2.0 in order to have an almost gaussian trans-
mitted wave packet. This guarantees the validity of the SPM.
The surprising feature of our numerical analysis is that the
tunnelling velocity is already greater than one for a moderate
barrier width



S. De Leo, P.P. Rotelli: Dirac equation and tunneling phenomena 245

the asymptotic tunneling velocity. We only note that if
instead of a gaussian wave packet (which technically over-
shoots the tunneling zone) we use a truncated gaussian, we
can avoid infinite SPM tunneling times by truncating be-
low V0+m. We warn, however, that a truncation in the
momentum spectrum of a wave packet automatically intro-
duces infinite wave packets in configuration space, and we
have to take care in using the SPM [2, 5].

3.2 Superluminal velocities

In the previous subsection, we derived an expression for the
transmission time,

ttra(Ẽ0, l) .

This expression requires knowledge of Ẽ0, the peak value
of the transmitted momentum distribution. This implic-
itly assumes a single maximum. So, the SPM is certainly

Fig. 3. The transmitted momentum distribution is plotted
as a function of ap for different values of l/a. The potential
aV0 = 10 is now much smaller than the mass of the particle,
am = 103, and the peak of the incident momentum distribu-
tion is yet chosen to coincide with the center of the allowed
zone for the momentum, ap0 = am

√
V0(V0+2m)/2 = 5

√
201.

This case represents the non-relativistic limit, V0�m and E−
m = ENR�m. The amplifications show a considerable atten-
uation of the transmission probability with respect to the rela-
tivistic case

valid for moderate values of l, where the transmitted spec-
trum is almost gaussian as it is shown in Figs. 1 and 3
(l � 2a). In such a context, we have numerically calcu-
lated Ẽ0(l) and obtained ttra(Ẽ0, l) by (18). In Figs. 2a and

4a, we have plotted ttra(Ẽ0, l)/a against l/a. We ob-
serve that, for l� a, we have to use instead of the max-
imum momentum value the average value of the spec-
trum, i.e. Ẽ0 ≡ 〈E〉. This is because for a momentum
curve that ends on a maximum, thus being very asym-
metric, numerical model calculations show that a more
accurate result for the SPM times is obtained with the
use of 〈E〉. The surprising feature of the curves given in
Figs. 2a and 4a is obtained by taking the ratio of the
coordinates,

vtra(Ẽ0, l) =
l

ttra(Ẽ0, l)
,

Fig. 4. The plot in a represents the variation of the (adimen-
sional) transmission time, ttra(Ẽ0, l)/a, as a function of l/a.
The plot in b represents the ration between the barrier width, l,
and the transmission time ttra(Ẽ0, l), i.e. the effective vel-
ocity of the tunneling process. The potential aV0 = 10 is much
smaller than the mass of the particle, am= 103, and the peak of
the incident momentum distribution is ap0 = 5

√
201. The max-

imum value of l/a has been chosen to be 2.0 in order to have
an almost gaussian transmitted wave packet. This guarantees
the validity of the SPM. The surprising feature of our numer-
ical analysis, i.e. the tunneling velocity greater than one for
a moderate barrier width, is confirmed in the non-relativistic
limit
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the effective velocity of the tunneling processes. This is
plotted in Figs. 2b and 4b as a function of l/a. As it can
be seen from Figs. 2a and 4a, there is a plateau region,
where the transit time is independent of the value of l/a.
In this region the effective velocity grows linearly (see
Figs. 2b and 4b). However, the surprising feature is the nu-
merical value of the velocity in this region: it is already
greater than one both for the relativistic and for the non-
relativistic case. We have no need to go to the infinite
barrier width limit (Hartman effect) to find superluminal
velocities.

4 Conclusions

We have studied in this paper the tunneling phenomena
predicted by the Dirac equation. One of the principal ques-
tions asked at the start was if a Hartman effect exists also
for the Dirac equation. The answer is positive, since the
spinors play no significant role in the calculation of the
transmission times. There is a difficulty with the fact that
the different momentum dependence of the spinors lead to
different transmission times for the components. However,
this does not modify the result of each of them exhibit-
ing a Hartman-like effect. It is the SPM that obliges us to
work with wave function amplitudes rather than with the
transmission probability function, in which spinor compo-
nents have been summed over. However, if all spinor com-
ponents yield superluminal velocities, then superluminal
velocities must be expected. The Hartman limit (l� a) has
an added complication, because the transmission function
dominates the incoming convolution function (gaussian in
all our calculations), and it is not yet clear how, or even
if, the SPM works in the absence of a clean maximum in
the momentum distribution.We have avoided entering into
this equation, because there is no need to go to l� a in
order to exceed the velocity of light.
A second question involved in our study was the iden-

tification of the nature (charge) of the particles temporar-
ily (for wave packets) in the classically forbidden bar-
rier region. This is a relevant question when one recalls
that in the Klein energy zone (E < V0−m) antiparticles
are created and/or annihilated in the barrier region. For
an antiparticle the barrier becomes a well, and the par-
ticles of energy E mathematically below the potential (V0)
are re-interpreted as antiparticles of energy −E physically
above the potential (−V0) [6, 9]. It is tempting to con-
sider all “particles” with E < V0 (below potential) to be in
fact physical antiparticles, even if associated to evanescent
terms (B tunneling zone). This is the reason why we di-
vided the tunneling energy zone into two: the A (V0 <E <
V0+m) and the B (V0−m<E < V0) zones. We now give
an argument based upon our studies of the Klein zone that
says that this hypothesis is not true.
Let us consider in the following the simple step poten-

tial. The Dirac equation conserves probabilities. How is
this consistent with pair creation in which more particles
are reflected, R > 1 (Klein paradox), than are incident?
Physically, the total charge is conserved, but the prob-

ability certainly is not. The answer is suggested by the
well known fact that the particles below potential in the
Klein zone have the “wrong” group velocity. This fact
incidentally concords with the Feynman–Stückelberg con-
clusion that such particles with energy below potential
must actually travel backwards in time. Returning to our
conundrum, we observe that in any formal numerical cal-
culation that ignores the antiparticle re-interpretation,
the Klein paradox appears mathematically as the par-
ticular solution to a problem in which at t = −∞ we
have two opposite moving wave packets : the incident wave
packet at z = −∞ and the wave packet below potential
(of appropriate size) at z = +∞. When these two meet
at time t ∼ 0 at the step discontinuity z = 0, the conti-
nuity equations tell us that they unite and form a sin-
gle wave packet, the reflected wave packet [20]. In this
way probability is indeed seen to be conserved. It is the
re-interpretation in physical particle/antiparticle terms
that alters our viewpoint. However, the Dirac equation
(with a real potential) can be viewed in this mathemati-
cal picture with only particles, albeit with energies both
above and below potential. Indeed this is the way every-
one treats the stationary plane wave problem, including
ourselves [6].
Let us now apply the same mathematical viewpoint to

the step in the energy zones A and B. In this case, there
cannot be any effective particle flow from z =∞, since
the stationary solution with the barrier is, in both energy
zones, a pure exponentially decreasing space function. At
time t=−∞ only the incoming wave packet exists in this
case. Eventually, for t=+∞ only the reflected wave packet
exists. For times within the transmission period during
which complete reflection occurs, we cannot have a reflec-
tion coefficient R > 1, even if only for an instant, without
violating probability conservation. This conclusion is inde-
pendent of the choice of the A or B zones. It is based upon
the impossibility of having a modification of the initial con-
ditions so as to reproduce a transitory Klein-like paradox.
Consequently, even in tunneling, the probability density
under the potential must represent the same particles as
those of the incoming wave.
It would be desirable to conclude the debate on su-

perluminal velocities in tunneling phenomena, but, at the
moment, the results are far from being conclusive. For a po-
tential of the order of the mass, the Dirac equation cannot
be viewed as a one-particle equation, and particle creation
is expected to play an important role. There is still much
to be studied in potential problems within field theory, and
the final answer can only be reached by analyzing tun-
neling phenomena in a second quantized theory [21, 22].
However, this topic exceeds the scope of this paper, and it
will be appropriately discussed in a forthcoming article. In
such a spirit, this paper has to be seen as an initial work to
stimulate further investigations.
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Appendix

Let us discuss in detail the non-relativistic (NR) limit, E−
m = E NR�m and V0�m. We recall that for V0 <m
only the evanescent zone (A), 0 < E NR < V0, exists. For
the convenience of the reader, we rewrite the Dirac reflec-
tion and transmission coefficients given in the text,

T = exp[−ipl]

/[
cosh(ql)+

1+α2

2α
sinh(ql)

]
,

R=
1−α2

2α
sinh(ql) exp[ipl] , (A.1)

where

p=
√
E2−m2 ,

q =
√
m2− (E−V0)2 ,

α= i
q

p

E+m

E−V0+m
. (A.2)

Taking the NR limit, we obtain

p→ pNR =
√
2mENR ,

q→ qNR =
√
2m(V0−ENR) ,

α→ iqNR/pNR . (A.3)

Consequently,

TNR = exp[−ipNRl]

/

×

[
cosh(qNRl)− i

2ENR−V0

2
√
ENR(V0−ENR)

sinh(qNRl)

]
,

RNR =−i
V0

2
√
ENR(V0−ENR)

sinh(qNRl)TNR

× exp[ipNRl] . (A.4)

The square modulus of these coefficients,

|TNR|
2
=

4ENR(V0−ENR)

4ENR(V0−ENR)+V
2

0 sinh
2
[√
2m(V0−ENR)l

] ,

|RNR|
2
=

V
2

0

4ENR(V0−ENR)
sinh2

[√
2m(V0−ENR)l

]
|TNR|

2
,

(A.5)

is often encountered in standard quantum mechanics text-
books (see for example [23]).
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